Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2014 / Oct / Biomimetic Micropump
News and Research Technology Clinical

Biomimetic Micropump

Could a new acoustic micropump inspired by the legs of swimmers open doors for microfluidics?

By Stephanie Vine 10/20/2014 1 min read

Share

The potential of microfluidics and lab-on-a-chip technology is clear, but real-world applications have been slow to emerge. A lack of effective and inexpensive micropump options has been one challenge slowing the pace of development. Now, researchers from Penn State University believe they have the answer: an acoustofluidic pump, powered by a piezoelectric transducer (1). The pump uses acoustic waves to deliver fluids and, because of its low power consumption, it could be easily integrated into cell phone-based pointof- care diagnostic systems.

1014-205-biomimetic-main

“Swimmers were our inspiration,” says Tony Huang who led the team. “When we swim, we have to keep our legs kicking, which exerts a force on the water. The water, simultaneously, exerts a force back, making our body swim forward. This is the motion of Newton’s third law. In this case, if we keep our upper body stationary, while consistently kicking, there must be a net force exerted on water to push the flow backward. We started to think about whether we could use previously proposed sharp-edge oscillation to realize fluid propulsion motion.” Indeed, the pump works by acoustically oscillating solid, tilted sharp-edge structures that are constructed onto the sidewall of the microfluidic channel. Upon oscillation, these structures generate acoustic streaming effects, which in turn generate net forces in the direction that the sharp-edge structured oriented. While the idea is relatively simple and the fabrication is relatively easy, the sharp-edge structures are constructed in a silicon mold using deep reaction ion etching, which could be a challenge in terms of mass production.

However, Huang believes the effort is worthwhile as the technology offers several advantages over other micropumps. “Active, on-demand control means that the pump works whenever we want it to,” says Huang. “It can also generate a range of pumping flow rates, from nanoliters to microliters per minute; and the performance can be adjusted by changing the numbers of sharp-edge structures and the voltages applied to the piezoelectric transducer. Perhaps most special of all, it can achieve various kinds of flow operations by programming the input signals to the piezoelectric transducers; the pulsed pumping flow, for instance, can be used to mimic cardiac flow in microfluidic chip to perform cardiovascularrelated studies.”

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

References

  1. Po-Hsun Huang et al., “A Reliable and Programmable Acoustofluidic Pump Powered by Oscillating Sharp-Edge Structures”, Lab-on-a Chip, DOI: 10.1039/C4LC00806E (2014).

About the Author(s)

Stephanie Vine

"Making great scientific magazines isn’t just about delivering knowledge and high quality content; it’s also about packaging these in the right words to ensure that someone is truly inspired by a topic. My passion is ensuring that our authors’ expertise is presented as a seamless and enjoyable reading experience, whether in print, in digital or on social media. I’ve spent seven years writing and editing features for scientific and manufacturing publications, and in making this content engaging and accessible without sacrificing its scientific integrity. There is nothing better than a magazine with great content that feels great to read."

More Articles by Stephanie Vine

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.