Conexiant
Login
  • The Analytical Scientist
  • The Cannabis Scientist
  • The Medicine Maker
  • The Ophthalmologist
  • The Pathologist
  • The Traditional Scientist
The Analytical Scientist
  • Explore

    Explore

    • Latest
    • News & Research
    • Trends & Challenges
    • Keynote Interviews
    • Opinion & Personal Narratives
    • Product Profiles
    • App Notes

    Featured Topics

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy

    Issues

    • Latest Issue
    • Archive
  • Topics

    Techniques & Tools

    • Mass Spectrometry
    • Chromatography
    • Spectroscopy
    • Microscopy
    • Sensors
    • Data & AI

    • View All Topics

    Applications & Fields

    • Clinical
    • Environmental
    • Food, Beverage & Agriculture
    • Pharma & Biopharma
    • Omics
    • Forensics
  • People & Profiles

    People & Profiles

    • Power List
    • Voices in the Community
    • Sitting Down With
    • Authors & Contributors
  • Business & Education

    Business & Education

    • Innovation
    • Business & Entrepreneurship
    • Career Pathways
  • Events
    • Live Events
    • Webinars
  • Multimedia
    • Video
Subscribe
Subscribe

False

The Analytical Scientist / Issues / 2023 / May / An Imaging Revolution: from CERN to the Clinic
Mass Spectrometry

An Imaging Revolution: from CERN to the Clinic

Could recent developments in secondary ion mass spectrometry imaging revolutionize digital molecular pathology?

By Ron M. A. Heeren 05/15/2023 1 min read

Share

The evolution of physical-chemical analytical instruments has traditionally focused on the improvement of resolution, separation, sensitivity, and throughput. Here, resolution refers to different parameters such as spectral resolution, molecular resolution, structural resolution, spatial resolution, and several more. In pathology based clinical diagnosis, the speed of analysis is key. Optical scanning of immunostained slides can be performed in minutes, but limited possibilities for multiplexing exist. For example, imaging lanthanide-labeled antibodies with SIMS offers the multiplexing capabilities but lacks the speed. In imaging technologies in particular, the detail that can be observed is crucial and the “resolution revolution” is strongly based on advances in detector technology and image processing. But it usually comes at the expense of throughput. Make the pixel size 10 times smaller and the same analytical area requires 100 times longer data acquisition time.

But a new development in secondary ion mass spectrometry imaging changes that paradigm – based on an innovation in mass spectrometry that takes advantage of massively parallel detection of arrival time and position capabilities, combined with an innovative detector coming from CERN: the Timepix3 system. The detector offers nanosecond timing resolution and continuous time resolved image detection. M4i researchers have coupled it to a microscope-mode mass spectrometry imaging system that allows for the detection of more than a million pixels per second – that’s orders of magnitude faster than what is possible with conventional imaging experiments. It uniquely combines throughput and spatial resolution with single ion detection capabilities for large m/z ions.

We’ve applied this new system for ultrafast SIMS based molecular imaging of large areas at submicron spatial resolution. When applied to biomedical tissue analysis, a variety of molecules can be visualized at cellular detail in a matter of minutes. I believe this approach could revolutionize digital molecular pathology, as well as peri-operative diagnostics in a true clinical translational setting. In other words, bridging the translational gap between fundamental mass spec research and pathology – by making tissue diagnoses more precise and rapidly improving precision medicine through more individually tailored therapies.

Newsletters

Receive the latest analytical science news, personalities, education, and career development – weekly to your inbox.

Newsletter Signup Image

About the Author(s)

Ron M. A. Heeren

Director, M4I, and Distinguished Professor, University of Maastricht, Netherlands

More Articles by Ron M. A. Heeren

False

Advertisement

Recommended

False

False

The Analytical Scientist
Subscribe

About

  • About Us
  • Work at Conexiant Europe
  • Terms and Conditions
  • Privacy Policy
  • Advertise With Us
  • Contact Us

Copyright © 2025 Texere Publishing Limited (trading as Conexiant), with registered number 08113419 whose registered office is at Booths No. 1, Booths Park, Chelford Road, Knutsford, England, WA16 8GS.